
Software Vulnerability Detection by Fuzzing and Deep
Learning

Yang Xiang[0000−0001−5252−0831]

Swinburne University of Technology, Australia
yxiang@swin.edu.au

Abstract. In this keynote talk, we introduce the current research and trend in the
software vulnerability detection research. Then we present a series of novel ap-
proaches to deal with the vulnerability issues, such as the fuzzing, deep learning,
and the combined approach to improve the effectiveness of the detection.

Keywords: Cybersecurity, Cyber-attacks, Software, Vulnerability, Deep learn-
ing, Fuzzing.

1 Introduction

Cybersecurity has become one of the top priorities in the research and development
agenda globally today. New and innovative cybersecurity technologies that can ef-
fectively address this pressing danger are critically needed. Data-driven and system
approaches to solve cybersecurity problems have been increasingly adopted by the
cybesecurity research community. They have two areas of focus: detection and pre-
diction of cyber threats. Recently, there have been significant efforts to detect soft-ware
vulnerabilities. New methods and tools, consequently, must follow up to adapt to this
emerging security paradigm.

Software lifecycles include development, deployment and usage, and mainte-nance
phases. Current practice involves avoiding vulnerabilities during the develop-ment phase
and removing vulnerabilities via patching during the deployment and usage phase. In
fact, due to rampant security breaches in software, detecting vulner-abilities in differ-
ent stages of software lifecycles has never become an easy job. Ex-isting methods face
significant technical challenges caused by code representation, computational resource
constraints, and algorithm bottlenecks.

2 Summary of the Talk

In this talk, we introduce the current research and trend in the software vulnerability
detection research. Then we will present a series of novel approaches to deal with the
vulnerability issues, such as the fuzzing, deep learning, and the combined approach
to improve the effectiveness of the detection. The focus of the fuzzing approach is on
automatic black-box fuzzing especially for firmware; and the focus of the deep learning
approach is to reduce the training samples and improve the detection rate.



Existing techniques take much time to detect and verify vulnerabilities, which is too
slow for massive code detection in the development phase. While a bug is an unintended
code state, a vulnerability is a bug that attackers can exploit. The code states are usually
vast, and the bug locations are unknown, making it difficult to detect bugs efficiently
and effectively. In the maintenance stage, developers must reproduce, test, and fix bugs,
which may require specific inputs and complex execu-tion states to trigger them. Both
deep learning and fuzzing methods have pros and cons in detecting, verifying vulnera-
bilities, and performance. Current techniques face key challenges that urgently require
practical solutions:

Fast detection of massive codes – From the software developer’s perspective, one
can use pre-trained model to fast detect the vulnerabilities automatically from time to
time during the development process by scanning codes. From the user’s perspec-tive,
static analysis can fast scan the executable codes. Among the static analysis techniques,
machine learning, especially deep learning has been used for software vulnerability
detection. Deep learning-based static analysis techniques have been widely accepted
given that it can automatically extract high feature representations and interpret com-
plex non-linear structure. Thorough detection – One often wants to check every piece of
code when it is un-known that whether a potential bug exists. The power schedule deter-
mines the num-ber of mutations assigned to each seed, and a seed is an input that makes
process in code coverage. While these improvements have considerably decreased the
time required to visit different parts of a target application, it is important to understand
that code coverage alone is a necessary but not sufficient condition to discover bugs.

Solutions and future research directions will be discussed following above.


